
Integrated Knowledge
Management (IKM) Volume 4

Version 1- Last Update 1/25/2024

Integrated Knowledge Man-
agement (IKM) Volume 4

iii

Table of Contents
I. Foundational Architecture ... 1

1. Terminology Knowledge Architecture (Tinkar) Overview ... 3
1.1. Motivation: Why Tinkar? ... 4
1.2. The Problem Tinkar Addresses ... 5
1.3. About Tinkar ... 6
1.4. Tinkar Objectives and Purpose – Manage Terminology and Change 7
1.5. Related Efforts ... 7
1.6. Benefits of Self-Describing Architecture ... 8
1.7. Approach - Architectural Separation of Concerns ... 8
1.8. About this Document ... 10

2. Business Requirements ... 12
2.1. Clinical Requirements .. 12
2.2. Asset Curation Requirements .. 13
2.3. Configuration Requirements .. 16

2.3.1. Operations ... 16
2.3.2. Patterns for Representing Various Assets .. 17
2.3.3. Constraints .. 19
2.3.4. Minimally Required Content ... 20

2.4. List of Requirements ... 20
3. Tinkar Reference Model ... 22

3.1. Standard Class Model .. 22
3.2. Component Types ... 24
3.3. Field Data Types .. 25
3.4. Pattern (For Semantics) .. 27
3.5. Overall Tinkar Architecture .. 29
3.6. Coordinate ... 29

3.6.1. Calculating Coordinates ... 30
3.6.2. Next Steps Around Coordinates .. 31

3.7. Future Iterations .. 31
4. Next Steps .. 32

4.1. Tinkar Serialization Data .. 32
4.2. Tinkar interfacing with Fast Healthcare Interoperability Resource (FHIR) 32

4.2.1. Dynamic FHIR Terminology Servers ... 32
4.2.2. Static FHIR CodeSystem and ValueSet Resources 33

4.3. Tinkar interfacing with HL7 Unified Terminology Governance (UTG), HL7 Ter-
minological Content (THO), and HL7 Terminology Authority (HTA) 33

5. Key Takeaways ... 35
6. Foundational Architecture ... 36

6.1. Foundational Architecture Challenges ... 36
6.1.1. Accidental Complexity .. 36
6.1.2. Design by Committee .. 37
6.1.3. Stovepipe .. 37

7. References .. 39

Integrated Knowledge Man-
agement (IKM) Volume 4

iv

List of Figures
1.1. Why Tinkar? .. 5
1.2. Separation of Concerns: Knowledge Architecture ... 9
3.1. Versioned Component .. 22
3.2. Component Types ... 24
3.3. Compositional Semantics .. 25
3.4. Multi-Concept Tinkar Output .. 27
3.5. Pattern ... 28
3.6. Overall Tinkar Architecture .. 29

Part I. Foundational Architecture

Foundational Architecture

2

Table of Contents
1. Terminology Knowledge Architecture (Tinkar) Overview ... 3

1.1. Motivation: Why Tinkar? ... 4
1.2. The Problem Tinkar Addresses ... 5
1.3. About Tinkar ... 6
1.4. Tinkar Objectives and Purpose – Manage Terminology and Change 7
1.5. Related Efforts ... 7
1.6. Benefits of Self-Describing Architecture ... 8
1.7. Approach - Architectural Separation of Concerns ... 8
1.8. About this Document ... 10

2. Business Requirements ... 12
2.1. Clinical Requirements .. 12
2.2. Asset Curation Requirements .. 13
2.3. Configuration Requirements .. 16

2.3.1. Operations ... 16
2.3.2. Patterns for Representing Various Assets .. 17
2.3.3. Constraints .. 19
2.3.4. Minimally Required Content ... 20

2.4. List of Requirements ... 20
3. Tinkar Reference Model ... 22

3.1. Standard Class Model .. 22
3.2. Component Types ... 24
3.3. Field Data Types .. 25
3.4. Pattern (For Semantics) .. 27
3.5. Overall Tinkar Architecture .. 29
3.6. Coordinate ... 29

3.6.1. Calculating Coordinates ... 30
3.6.2. Next Steps Around Coordinates .. 31

3.7. Future Iterations .. 31
4. Next Steps .. 32

4.1. Tinkar Serialization Data .. 32
4.2. Tinkar interfacing with Fast Healthcare Interoperability Resource (FHIR) 32

4.2.1. Dynamic FHIR Terminology Servers ... 32
4.2.2. Static FHIR CodeSystem and ValueSet Resources .. 33

4.3. Tinkar interfacing with HL7 Unified Terminology Governance (UTG), HL7 Termino-
logical Content (THO), and HL7 Terminology Authority (HTA) .. 33

5. Key Takeaways ... 35
6. Foundational Architecture ... 36

6.1. Foundational Architecture Challenges ... 36
6.1.1. Accidental Complexity .. 36
6.1.2. Design by Committee .. 37
6.1.3. Stovepipe .. 37

Terminology Knowledge Ar-
chitecture (Tinkar) Overview

3

1. Terminology Knowledge
Architecture (Tinkar) Overview

Over the past decades, biomedical terminologies have increasingly been recognized as key resources for
knowledge management, data integration, and decision support. [1] Acceleration and development of Elec-
tronic Health Record (EHR) systems has precipitated the emergence of “standard terminologies” and their
widespread adoption in the clinical community. These include Systematized Nomenclature of Medicine
Clinical Terms (SNOMED CT®), the Logical Observation Identifiers, Names, and Codes (LOINC®) and
RxNorm. The availability of these clinical terminologies through the terminology services of Fast Health-
care Interoperability Resource (FHIR) is facilitating their usage in support of interoperability in healthcare.

Interoperability requires standardized semantics based on reference terminology provided by standards
development organizations, professional organizations, or government agencies. These organizations pub-
lish their content with the intention of licensing it to health information technology (IT) vendors, providers,
and research organizations. In the U.S., the core clinical reference terminology is based on SNOMED
CT®, LOINC®, and RxNorm. Healthcare organizations must adopt and integrate subsets or modules of
various reference terminology and manage references, dependencies, versions, and releases. It is important
for the integrity of medical records that the change history of concepts and value sets can be managed
and tracked to allow the exchange of either current or retrospective medical records. Therefore, enterprise
terminology requires integrated terminology using a common representation and management.

Despite the need to use standard terminologies in a highly integrated way, there is no standard represen-
tation across SNOMED CT®, LOINC®, RxNorm, etc. Some partnerships have been created among de-
velopment teams to facilitate interoperability and minimize duplication of effort. Further integration has
been proposed but will require additional resources to bring these terminologies closer together. However,
while this evolution leads to greater compatibility and interoperability, integration of SNOMED CT®,
LOINC®, and RxNorm is non-trivial as these terminologies use different formalisms and tools for their
representation. Various terminologies have different semantics, models, release cycles, and versioning
mechanisms. [1] While there is recognition that terminologies are not standardized at the exchange level,
there is no consensus about harmonized next steps to solve the challenges.

This document focuses on the need for – and logical specification of – a Terminology Knowledge Archi-
tecture (Tinkar). The Tinkar Reference Model is a logical model that describes the standardized model for
terminology and change management. Tinkar provides an architecture that delivers integrated terminology
to the enterprise and its information systems. In doing so, it addresses the differences in management and
structure across reference terminology, local concepts, and code lists/value sets.

The Capability Maturity Model is a development model and can be viewed as a set of structured levels that
describe how well the behaviors, practices, and processes of an organization can reliably and sustainably
produce required outcomes. There are five levels defined along the continuum of the Capability Maturity
Model (see below). The model provides a theoretical continuum along which process maturity can be
developed incrementally from one level to the next. An implementation of the Tinkar Specification can
provide a single representation for all terminologies required in the U.S. and other countries, while also
providing a better foundation for maturing change management models as described by the Capability
Maturity Model [2]:

1. Initial – Tinkar aims to reduce and eliminate challenges with management of changes to terminology
being unpredictable, poorly controlled, and reactive.

2. Repeatable – Tinkar provides the foundation for robust configuration management and quality assur-
ance for terminologies.

3. Defined – Tinkar allows terminologies to have standardized update and extension processes.

Terminology Knowledge Ar-
chitecture (Tinkar) Overview

4

4. Managed – Tinkar represents updates and changes to terminologies so that the changes can be measured
and controlled.

5. Optimizing – Tinkar aims to allow multiple stakeholders to apply and retrieve changes to shared ter-
minology content with equivalent and harmonized results.

Tinkar aims to adhere to the following statement from a publication about developments in clinical termi-
nologies in the 2018 Yearbook of Medical Informatics [1]: “The benefits of the integrated terminologies
in terms of homogenous semantics and inherent interoperability should, however, outweigh the complex-
ity added to the system.” This specification provides the foundation of a knowledge architecture that is
intended to integrate reference terminology from distributors (e.g., SNOMED CT®, LOINC®, RxNorm)
with local concepts to support interoperable information semantics across the enterprise.

1.1. Motivation: Why Tinkar?
Information systems that are used across the healthcare enterprise record and manage clinical data using
clinical statements and clinical terminologies in non-standardized ways. Interoperability specifications
aim to require terminology bindings to concepts, code systems, and reusable value sets. Currently, there is
variation in clinical data exchange across the enterprise, as existing payloads and clinical statements use
inconsistent and highly variable enterprise terminologies. The management of the concepts, code systems,
and value sets is non-trivial because developers, implementers, and end users are forced to manage “un-
necessary complexity.” For example:

• Representation of medications: RxNorm codes overlap with CVX codes. Investigational vaccines from
the U.S. Food and Drug Administration (FDA) are not represented in RxNorm, CVX, or SNOMED
CT®.

• Representation of COVID-19 result codes are inconsistent and are not equivalent (e.g., detected, unde-
tected, positive, negative, etc.).

As a result of these complexities, there are many ways to say the same thing using standard terminologies
and standard formats. The Institute of Medicine report, Health IT and Patient Safety: Building Safer Sys-
tems for Better Care, highlighted the unintended consequences of health IT-induced harm that can result
in serious injury and death due to dosing errors, failure to detect serious illnesses, and delayed treatment
due to poor human-computer interactions, confusing clinical terminology, or unreliable data quality. [3]
Despite the widespread understanding of the importance of the quality of clinical data, there is currently
a lack of integration and management of clinical terminologies across the healthcare enterprise.

Tinkar intends to support integration of clinical terminology and local concepts to support increased data
quality for interoperable clinical information. High-quality clinical data enables healthcare systems across
the enterprise to conduct robust and meaningful data analysis and increase overall interoperability, which
ultimately enhances quality of care across all medical facilities.

Terminology Knowledge Ar-
chitecture (Tinkar) Overview

5

Figure 1.1. Why Tinkar?

Separation of concerns is an architectural design principle, whereby a system is divided into distinct
sections, such that each section can address separate concerns. In this case, each architectural layer may
build upon artifacts from lower layers.

1.2. The Problem Tinkar Addresses
The following four high level potential deficiencies related to poorly integrated terminology and inefficient
change management describe preventable harm that Tinkar addresses:

1. Inability to recognize equivalence.

• Difficulty with determining that codes/terms using standard terminologies from disparate health
IT systems represent a common clinical idea/concept (e.g., “Feels Feverish” in the Temperature
Symptoms SNOMED CT® hierarchy versus “Feels Hot/Feverish” in the Observation and Sensation
SNOMED CT® hierarchy. Both concepts are Findings in SNOMED CT® but there is no unifying
way to identify equivalence).

2. Inability to represent a pertinent phenomenon.

• A new set of local terminology may be managed with value sets and concept gaps addressed in quick
iterations (e.g., “COVID-19 negative test result” was needed in practical use before official Standards
Development Organization (SDO) releases, or gaps like “mild anemia”, which was proposed, but not
accepted, by both the international and U.S. SNOMED CT® release).

3. Flawed information.

• Incorrect usage or representation of clinical ideas/concepts from standard terminologies due to a lack
of harmonization and multiple representations that currently exist (e.g., LOINC® and SNOMED
CT® have overlapping concepts).

4. Inability to reliably and safely evolve over time. [4]

Terminology Knowledge Ar-
chitecture (Tinkar) Overview

6

• There is a lack of clear, detailed descriptions of changes to terminologies over time so that changes
can be understood by implementers. Terminologies often change in ways that are convenient for the
creators, but complex for the users (e.g., redundancy, major name changes, code reuse, and changed
codes).

Consider the following examples of implementations that have gone wrong: [5-8]

• Computer error may have led to incorrect prescribing of statins to thousands of patients.

• Thousands of patients in England may have been incorrectly prescribed or taken off statins because
of a major IT glitch.

• Underlying cause: (1) code mapping errors, and (2) brittle means for determining equivalence.

• >Alert for monitoring thyroid function when taking Amiodarone stopped working.

• Amiodarone is associated with several side effects, including thyroid dysfunction, which is due to
amiodarone’s high iodine content and its direct toxic effect on the thyroid.

• Underlying cause: (1) the identifier for the drug amiodarone was changed in another system, and (2)
uncoordinated means for determining equivalence.

• 62% of clinical decision support (CDS) malfunctions were attributable to changes in underlying
codes or data fields.

• Change is a constant feature of providing healthcare.

• Underlying cause: (1) poorly managed change.

Tinkar addresses challenges and problems from the above implementation examples:

Challenge Tinkar Solution

Uncoordinated or brittle terminology integration
frequently breaks across systems

Standardize (and facilitate sharing) of terminology
representation across systems

Management of change over time Consistent representation and configuration
management

SNOMED CT®’s proprietary aspects prevents use
as a common format for LOINC® and similar

Build on existing SNOMED CT® foundation,
rather than reinvent, using an open-source initiative
approved permissive licenses (i.e., Apache 2)

1.3. About Tinkar
Tinkar provides the foundation of a knowledge architecture that is intended to integrate reference termi-
nology from distributors (e.g., SNOMED CT®, LOINC®, RxNorm) with local concepts to support inter-
operable information semantics across the enterprise.

This specification introduces an agile approach to terminology design and formatting that promotes the use
of self-describing data. It is a shift from hard-coded models that have been favored due to their prescriptive
nature but have shown limited flexibility and extensibility. This specification is similar to FHIR as it places
the focus on a self-describing, extensible approach to representing terminology. Therefore, Tinkar aims to
be both self-describing and completely machine processed:

1. Self-describing machine-readable representation of terminology, such that if an application can process
the metadata, it should be able to import the content/concepts and make it available to enterprise ap-
plications.

Terminology Knowledge Ar-
chitecture (Tinkar) Overview

7

2. The machine-readable terminology could generate human-readable documentation so that business an-
alysts and developers can understand and apply it correctly.

1.4. Tinkar Objectives and Purpose – Manage
Terminology and Change

This specification describes the requirements and characteristics of systems required to manage terminol-
ogy produced by a variety of organizations across a healthcare enterprise. This foundation must allow
enterprise to extend terminology standards and implement extensions in a timely fashion.

This specification is intended to support healthcare organizations’ standard terminology modules, value
sets, and coding systems as well as local terms and equivalence mappings.

A standard-based Tinkar specification is necessary to support the operation of a variety of systems intended
to deliver knowledge management for terminology to vendors, providers, and even standards-development
organizations, like Health Level Seven (HL7).

1.5. Related Efforts
Previous efforts have attempted to create a common set of terminology capabilities and services by spec-
ifying a single predefined structure for managing terminology. Unfortunately, a hardwired structure that
works for one standard may not work for another. The inability to integrate content across terminology
standards is a barrier to implementing services and modules that can deliver integrated concepts, code
lists, and value sets required by enterprise systems for treatment, research, business process automation,
quality measures, and outcome analysis.

• Clinical applications require integrated terminology to create interoperable clinical statements that are
organized into messages, documents, or resources.

• Data analysis and research require integrated terminology to analyze aggregated information. Interop-
erability, CDS, or other types of automation require common semantics based on a set of integrated
models across reference standards (e.g., SNOMED CT®, LOINC®, RxNorm).

The Unified Medical Language System (UMLS) Metathesaurus is a compilation of multiple sources orga-
nized into ‘concepts’ that contain terms from many sources. The terms within a concept are declared syn-
onyms by UMLS editors. However, its use in terminology systems has limited utility for several reasons.
First, UMLS concepts are created on lexically-based rules and use very little of the additional information
(relationships between concepts) that may be available from the source terminology. It does not permit
classification to identify cases of possible missed synonymy. Second, issues of currency occur because
of dyssynchrony of release dates between source terminologies and the UMLS itself. Third, the UMLS
does not support a contribution model. That is, it is a static file that cannot be amended to support addi-
tional terms that may be required to fill gaps in existing terminologies subsumed by the Metathesaurus;
it does not support extensions. Lastly, there is no efficient format for sharing integrated Metathesaurus
content (though there is Rich Release Format [RRF]). The UMLS is not an architecture for terminology
management. It may only serve as a reference, noting the aforementioned limitations. An implementation
of Tinkar may help address these limitations.

Common Terminology Services 2TM (CTS2TM) is an architecture for terminology management that sup-
ports history retrieval, though it does not support an arbitrarily granular change set model for versioning.
The Tinkar specification, in contrast, provides that every new assertion, whether a new component or a
change to an existing component, must have a precise version coordinate that govern granular change
control. CTS2TM asserts a specific terminology model and does not support unanticipated properties with
a self-describing model.

Terminology Knowledge Ar-
chitecture (Tinkar) Overview

8

The U.S. Core Data for Interoperability (USCDI) is an amalgamation of various encoding standards. The
standards being identified for specific data elements do not themselves provide consistency for how en-
coding is represented, how those encoding standards change over time, and how those encoding standards
are distributed. As demonstrated by COVID-19 data needs, coordinated extension of content, timely dis-
tribution of updates, and consistency of representation are required to effectively respond to needs of pub-
lic health and syndromic surveillance. Tinkar could help make it easier to standardize the representation,
distribution, version and configuration management, and ability to share extensions to the USCDI as well
as the underlying terminology systems themselves.

1.6. Benefits of Self-Describing Architecture
Tinkar is self-describing and completely machine-processed. A self-describing architecture is defined in a
report from Queensland University of Technology as follows: “[t]he idea is that self-descriptions of data
and other techniques would allow context-understanding programs to selectively find what users want, or
for programs to work on behalf of humans and organizations to make them more scalable, efficient and
productive.” [9] Key advantages of a self-describing architecture (or metadata driven architecture) [10]
include the following details:

Changes can be reviewed immediately – Every action or change by end users can be immediately pre-
viewed or tested, without needing any compilation or deployment process. The review can also be done
before saving or publishing the changes, which makes it an interactive development environment for de-
signers to create functionality in an iterative manner.

Version control with easy rollback – Every time any changes are made to published terminology artifacts,
the historic versions of the metadata files are maintained. This enables easy version control and rollback
when necessary. Every time a change is made to any artifact, the prior version that existed is archived.
When a developer needs to roll back to the prior version, it can be achieved easily.

Any data source can be added – A self-describing architecture facilitates the ability for multiple types
of terminology data sources to be connected to the system.

Define granular coordinates and configuration management – The functionality for defining granular,
user-defined settings and controls for granular elements of clinical terminology management is supported.
This includes create, read, and append settings, as well as management of individual elements, like fields
or other controls.

Faster extensions – A benefit of a self-describing architecture is that it can abstract a lot of the deep
internal complexities that makes development of standard terminologies complicated. This approach can
improve processes around extensions to terminology.

1.7. Approach - Architectural Separation of
Concerns

Increased reliance on computerized health records, including EHR Systems, requires standardized medical
terminology to encode health information consistently across systems and enterprises. Clinicians require
not only objective quantitative measurements (e.g., 90 beats per minute for a patient’s pulse), but also
procedural context (e.g., pulse oximetry, manual) about past observations or requests for future interven-
tions. While two quantitative measurements may be the same, the procedural information could indicate
meaningful semantic differences and lead to different clinical interpretation and treatment. As information
is exchanged across systems, the solution requires a common understanding of data, a method to support
knowledge-representation, and clinical decision rules based on common terminology and statements. Each
component must address an aspect, and together need to address the requirements of clinicians. Current

Terminology Knowledge Ar-
chitecture (Tinkar) Overview

9

HL7 standard implementations rely on profiles and templates to disambiguate statement and terminology,
and provide sufficient precision for transactions, documents, and standards-based application program-
ming interface (APIs). Therefore, the architectural approach described here is applicable to standards orga-
nizations developing interoperability for enterprise and project-specific implementations in equal measure.

Functional decomposition—often referred to as a Separation of Concerns (SoC)—across components or
sections with a specific purpose is a foundational design principle for complex system architecture. SoC
allows a complete system to be subdivided into distinct sections or components with well-defined func-
tionality and dependencies. If successful, this approach allows individual sections to be able to be reused,
as well as designed, implemented, and updated independently to address emerging requirements. This is
especially useful and important in a medical context given how many different health information and
clinical terminology projects are ongoing at any given time. Efforts are often uncoordinated and led by
disparate and unrelated standards development organizations. In these cases, SoC allows teams to work
independently, in coordination with each other, and reuse the resulting artifacts.

Figure 1.2. Separation of Concerns: Knowledge Architecture

Objectives provide a line-of-sight to an ideal state. Through a standardized terminology architecture, health care data will be
stored and shared more consistently across the enterprise.

HL7 FHIR, CIMI, …

Decision support and analytics

SNOMED CT®, LOINC®, RxNorm, …
Define what can be measured (Description
Logic and Language)

Define how to record a measurement (Numerical
and subject of information)

Shared format for terminology
Provides the interoperability foundation

Define how to process measurements (Decision
support, analytics…)

Terminology Knowledge

Foundational Architecture

Statement Model

Assertional Knowledge

Procedural Knowledge
How can clinical
decisions be
performed?

How is this related to
other clinical
concepts?

What was the
clinical
phenomenon?

What are the terms
and codes used to
describe a concept

How do we build
and manage it? F

T

S

A

P

T he K now le dge Arc hit e c t ure
Each architectural layer addresses separate concerns that can be reused, developed, and updated independently. A Knowledge
Architecture can individually resolve issues in the data within their layers vs a whole system, leading to much more agile improvement.

Separation of Concerns is an architectural design principle, whereby a system is divided into distinct
sections, such that each section can address separate concerns. In this case, each architectural layer may
build upon artifacts from lower layers.

Foundational Architecture – The Foundational layer of the Knowledge Architecture provides the com-
mon elements of interoperability, such as: object identity, versioning, modularity, and knowledge repre-
sentation. It includes (a) the foundation and building blocks of the common model; (b) how the repeatable
transformation process of disparate standards into the common model promotes interoperability with other
environments; and (c) how the modules of the architecture are tightly version controlled over time. The
Tinkar Reference Model belongs in this layer.

Terminology Knowledge - The Terminology Knowledge layer is responsible for structured sets of medi-
cal terms and codes that define concepts of interest, including descriptions, dialects, language, and seman-
tic hierarchy. SNOMED CT®, LOINC®, and RxNorm are part of this layer. It defines what valid codes
or expressions may be used by higher level layers.

Statement Model – The Statement Model layer is responsible for defining how data elements are com-
bined to create a statement. This layer reuses the artifacts defined in the Terminology Knowledge layer.
The analysis normal form (ANF) Reference Model [11] belongs in this layer.

Terminology Knowledge Ar-
chitecture (Tinkar) Overview

10

Assertional Knowledge – The Assertional Knowledge layer makes use of the Terminology Knowledge
layer concepts to specify non-defining facts that may be used by procedural knowledge algorithms. An
example fact might be that “thiazide diuretics treat hypertension.” Assertional Knowledge may also indi-
cate what symptoms may be associated with a disorder.

Procedural Knowledge – The Procedural Knowledge layer, also known as imperative knowledge, is the
knowledge exercised in the performance of some task. An example would be determining a hypertension
treatment plan by analyzing a combination of a patient’s clinical statements and the available assertional
knowledge. The procedural knowledge is responsible for information about standard ways to carry out
specific procedures, as well as other procedural guidelines, (e.g., treatment protocols for diseases and order
sets focused on certain patient situations). Procedural knowledge, together with assertional knowledge,
enables clinical decision support, quality measurement, and patient safety. This layer relies on the archi-
tectural foundation and terminology layers, incorporates the statement model for information retrieval, and
uses the assertional knowledge. Procedural knowledge artifacts may include clinical alert rules, reminders,
etc., that trigger actions or recommend interventions.

Examining a clinical procedure for controlling hypertension illustrates each of the layers of the informatics
architectural separation of concerns.

• At the Terminology Knowledge layer there may be various codes and terms from disparate source ter-
minologies to define a concept (e.g., hypertension). Ideally, these overlapping codes and terms would
be oriented to the same parent concept during the transformation and integration process at the Foun-
dational Architecture layer.

• The Statement Model layer enables representation of blood pressure measurement values (e.g., systolic
BP = 140 mmHg), or the categorical data (e.g., pregnancy induced hypertension vs. renal hyperten-
sion) within a standard data structure to facilitate information exchange or retrieval, such as within a
standards-based clinical statement (i.e., Clinical Information Modeling Initiative [CIMI], Clinical Doc-
ument Architecture [CDA], FHIR, ANF, etc.).

• The Assertional Knowledge layer represents non-procedural statements, or facts, such as “Stage 2 high
blood pressure is over 140 systolic or 90 diastolic,” or “beta-blockers and ACE inhibitors may be used to
treat hypertension”, or “beta-blockers are contraindicated in patients with a diagnosis of reactive airway
disease.”

• Finally, the Procedural Knowledge layer provides algorithms to analyze clinical statements about a
patient, in combination with the Assertional Knowledge, to recommend a treatment protocol for different
kinds of hypertension, including the considerations of, (e.g., patient age, co-morbidities etc., which can
be generated by an electronic clinical decision support system [Statement + Assertional layers]). This
layer adds support for workflow and conditional logic (i.e., if-then-else).

A clear separation of concerns enables the isosemantic transformation of standards-based clinical state-
ments to normal form in the Statement Model layer by decoupling structure from semantics and workflow.

HL7 relies on implementation guides (for V2, CDA, and FHIR) to add sufficient terminology knowledge
to standards-based clinical statements. Terminology constraints documented as profiles or templates are
the mechanism to create interoperable implementation guides from health IT standards. Only after the
Terminology Knowledge is fully defined can the standards-based statements be used to support business
and workflow decision points consistent with the Assertional and Procedural layers described above.

1.8. About this Document
This document describes how encoded clinical data can be improved with a terminology management
model. This terminology can be unified for HL7 and non-HL7 systems. The Terminology Knowledge
Architecture, known as Tinkar, treats terminology in a common way for managing enhanced patient care

Terminology Knowledge Ar-
chitecture (Tinkar) Overview

11

and improved record keeping. The unification of models such as SNOMED CT®, LOINC®, and RxNorm
will allow more robust computable medical records. The following sections contain the Tinkar Reference
Model, along with illustrative examples as to the complexity and necessity of type of structure.

Tinkar will take different language sources and cohesively manage terminology data. Section 2 lays out
the specific business requirements necessary for this task. The model representation is outlined in Section
3. Section 4 shows how Tinkar brings together the biomedical terminologies by a common description
format. An implementation of the Tinkar specification can be used to fill the gaps between the common
HL7 Terminologies and other systems like SNOMED CT®, RxNorm, Unified Code for Units of Measure
(UCUM), etc. The result is the distribution and sharing of cohesive data across all platforms.

Business Requirements

12

2. Business Requirements
This section details specific business requirements for a Tinkar logical model.

2.1. Clinical Requirements
The ultimate goal of this effort is to support the coordination of safe, effective medicine (Requirement 1).
This goal requires quality information in the patient record (Requirement 2), wherever it comes from, and
the increasingly distributed nature of care that requires commonly understood data standards (Requirement
3) to ensure mutual comprehension across the care team and over time. There are four outlined clinical
use cases:

• Record Patient Data

A care provider, already authenticated and authorized to the system and using the appropriate context
to ensure the system records the data for the correct patient, adds or modifies information in the patient
record. This may include signs, symptoms, impressions, diagnoses, orders, notes, or other assets.

This operation may initiate workflow processes or automated processes such as clinical decision support
suggestions.

For structured data using standard terminologies, the terms available are appropriate (Requirement 4)
for the clinical context, for the role (i.e., terms may differ for different kinds of users), and for the data
context (e.g., data entry fields may not support inactive or deprecated terms that would be allowed in
search or analytical contexts).

If the available terminology does not support the provider’s needs, the provider may assert a need for
a new term.

• Propose Terminology Change

If a provider attempts to enter a term that is not supported by the enterprise terminology, the effort will
be captured as a proposed term (Requirement 5).

Systems may capture this information unobtrusively as text, or prompt further information from the
clinician to assist the authoring process. The system will convey at least the text and the identity of the
clinician to the terminologist.

• Review Patient Data

A provider, already authenticated and authorized to the system and using the appropriate context to ensure
the system records the data for the correct patient, finds and reviews information in the patient record.

For structured data using standard terminologies, the terms available are appropriate for the clinical
context, for the role (i.e., terms may differ for different kinds of users), and for the data context (i.e., data
entry fields may not support inactive or deprecated terms that would be allowed in search or analytical
contexts).

Changes to the terminology that could affect record interpretation will be indicated (Requirement 6),
along with a way to identify the change and its effect.

• Review Knowledge Base Changes Relevant to Record

If the system identifies a relevant change, the provider may request further information.

Business Requirements

13

This will include the ability to see available values and CDS results for specific dates and contexts
(Requirement 7), including those under which the data was recorded or specific decisions were made.

Clinical Use Cases

The key capability for a clinician should be to record and review data quickly and accurately (Requirement
8), taking advantage of up-to-date classifications and decision support rules. This should be accomplished
by knowing when a change in the knowledge base might affect a record. The change management capa-
bility that supports these operations should be as unobtrusive as possible to patients and care providers,
and always readily available.

These operations depend on the availability not only of currently accurate terminology assets, but also
assets from prior points in time (Requirement 7). These may include assets as defined or refined by different
stakeholders with different sets of assumptions. For instance, whether a disorder meets a criterion defined
by a standard terminology, a payor, a professional society, or a locally chartered board of specialists.

To support these needs, the Enterprise Terminology that supports the clinical systems must manage change
systematically (Requirement 9), and it must do so for both internally-managed and externally-sourced
assets.

2.2. Asset Curation Requirements
Curation of these assets requires detailed change data. The evolution and maturation of knowledge hap-
pens at different times and places. Keeping standards and relationships to standards current is a complex
undertaking. A health system may subscribe to dozens of standard and commercial terminologies, each of
which may publish scheduled updates several times a year, and any of which may push out an emergency
update at any time. All these assets have different designs, so ensuring continued cohesion is expensive
and time-consuming, and the necessary transformations introduce risk. Systematic management of change
requires granular representation of the assets and associated asset changes.

There are best-practice capabilities in knowledge asset maintenance. The following is proposed for clinical
data standards:

• Unique object identification (Requirement 10): Every object under version control must have a unique
identifier, and the identifier must remain unchanged as the object is modified and different versions of
it are created and saved.

• Version history retention (Requirement 11): Each version of an object must be persisted as the object
changes over time, along with metadata indicating its version identifier, time of creation, creating author,
and branch of the version control system on which it was created. Further, every version of each object
must remain available for retrieval and inspection.

• Version comparison (Requirement 12): It must be easy to compare two versions of the same object and
identify all differences between them. Among other things, this capability is important to determine
whether updates to a sub-artifact have changed its semantics in a way that may affect the behavior of
one or more of its parent artifacts. Ready comparison is also important when merging two or more
concurrent development efforts involving the same knowledge artifacts.

• Branching capabilities (Requirement 13): It must be possible to create a virtual copy of the entire ver-
sion-control configuration, or a defined subset, in a new “path,” such that changes made to objects in
this branch do not appear in the original configuration. This capability allows individual knowledge en-
gineers to make and test changes to knowledge artifacts without affecting the work of other knowledge
engineers or the integrity of knowledge artifacts currently in production. This facility is critical to the
orderly and safe management of a clinical decision support system.

Business Requirements

14

• Merging capabilities (Requirement 14): It must be possible to incorporate all the changes made on one
branch of the version-control repository into another branch, such that any conflicts between different
versions of the same objects are detected and resolved. This capability is important to enable work done
by multiple knowledge engineers concurrently to be combined and incorporated into the main branch
of the repository. The merging capability is also important to allow knowledge engineers to update their
local branches of the repository with changes that may have been made by others to the main branch,
thus ensuring that changes will remain compatible with the latest version of the system.

These core properties support authoring and maintenance operations: at a high level, this means modify-
ing the enterprise terminologies (Requirement 15), importing standard terminologies (Requirement 16),
and publishing the enterprise terminologies (Requirement 17) to the client clinical systems. The standard
terminology publisher has the same needs around modification and publishing as the enterprise, and some
standards import other standards as well (e.g., Medication Reference Terminology [MedRT], which pub-
lishes relationships among other standards).

We distinguish between the Enterprise Terminologist and the SDO Terminologist. The Enterprise Termi-
nologist is responsible for ensuring that the terminology resources provided to clinical systems are current
and accurate. This involves managing the consumption of external terminologies as well as maintenance of
assets defined within the enterprise. The SDO Terminologist is responsible for ensuring that the terminol-
ogy resources provided to other terminology systems are current and accurate. This may involve managing
the consumption of external terminologies as well as maintenance of assets defined within the SDO.

• Modify Enterprise Terminology

A user adds, modifies, or deactivates content in the terminology assets of the enterprise, including assets
provided to clinical systems as well as management data used only within the knowledge base.

• Publish Enterprise Terminology

A user manages the publication process that supports the automated provision of terminology content
to clinical systems.

• Import Standard Terminology

A user incorporates a new standard terminology or new version of a standard terminology into the
enterprise terminology. During this process, functionality supports the assessment and management of
impacts on existing enterprise assets.

• Publish Standard Terminology

A user manages the publication process that supports the automated provision of terminology content to
client terminology servers.

• Modify Standard Terminology

A user adds, modifies, or deactivates content in the terminology assets of the standard, including assets
provided to client terminology systems as well as management data used only within the knowledge base
(e.g., changing SNOMED CT® relationships, inserting a concept in between two existing concepts). Note
that a standard can only be modified by the standard owner. A client enterprise may add to or modify
the content in an “overlay,” but those changes are part of the local enterprise assets. The client enterprise
cannot actually modify the standard.

Asset Curation Use Cases

Today, clinical systems consume terminologies, but the interfaces are point-to-point. To assert or assess
new information, the tools must already understand all relevant interface models. Since an external orga-

Business Requirements

15

nization may modify that model at any time, the ability to consume external assets involves ongoing man-
ual efforts to understand or confirm the model and the design of transformations to support consumption.
This is potentially expensive and risky.

We propose a “data-driven” architecture to support self-describing terminology assets. All changes can be
programmatically managed with a globally consistent design. Management may involve human review,
but it can leverage pattern-based recognition of specific change types for automated handling, leaving a
smaller number of cases that require human judgment. This information design will support a common
representation of all terminologies. There are two key requirements for this design:

1. A complete record of all changes, including relevant change context information (Requirement 11)

2. A single syntax to support the representation of all terminology assets, known and future (Requirement
18)

The context information of the first requirement includes the following:

1. The Status of the asset: whether it should be considered active or inactive in the context of these other
attributes (Requirement 19). For systems that do not support status, the default will be “active.”

2. The Time of the change, specified with a time zone and at an appropriate precision (Requirement 20).
For systems that do not provide a time, the default will be the release time.

3. The Author of the creation or change, unambiguously identified (Requirement 21). For systems that do
not provide an author, a default author will be created for the system.

4. The domain or organizational name of the larger asset within which the component is meaningful, such
as code system or edition (a.k.a., Module) (Requirement 22). For systems that do not provide a module,
a default module will be created for the system.

5. The production branch of that organization, e.g., for distributed development, testing, staging, or pro-
duction (a.k.a., Path) (Requirement 23). For systems that do not provide a path, a default path will be
created for the system.

These elements together are referred to by the acronym “STAMP.” Every new assertion, whether a new
asset or a change to an existing asset, must have a STAMP to determine when it is to be used. The STAMP
properties support the ability to apply terminology assets for specific purposes. For example:

• “Path” can be used to test provisional content without physically swapping out systems.

• “Modules” are used to organize content for maintenance and publication purposes. Modules are the do-
main or organizational name of the larger asset within which the component is meaningful, such as code
system or edition. Modularity for terminologies should follow a similar design to modularity in software
engineering. Deciding what belongs in certain modules or extensions within certain terminologies is
a difficult subject that is out of scope for this document, but having support for the ability to create
modules, recognize redundancy, and merge or retire concepts are important requirements that must be
supported. [12-14]

• “Time” supports the ability to apply CDS rules as they would have looked in the past.

A further requirement is that not only must the architecture support these properties, but that it must require
the properties for all assets under curation. Without consistent application of this rule, the foundational
capability of detailed version management is more difficult.

Additionally, for an asset to support a record of changes, each asset must itself be identifiable (Requirement
10).

Business Requirements

16

The “single syntax” requirement is harder to satisfy. One approach would be to define a syntax that ad-
dresses the data elements of all known terminologies. This would be a heavy specification, that would be
difficult to maintain, and could fail to capture new elements as terminologies are added in the future.

The other approach is to use a “self-describing” or “meta-modeling” approach, where the syntax defines
not only the content but also what the content means. “Rigid” or “brittle” specifications determine in ad-
vance where information belongs: a database may use column names to suggest what belongs in a column,
but there is no way to determine whether the name is a good one, or whether an instance value meets the
criterion implied by the name. But flexible specifications support data definition. Extensible Markup Lan-
guage (XML) (a subset of Standard Generalized Markup Language [SGML]) provides a way to specify
types of data and structural (not semantic) relationships. Resource Description Framework (RDF) goes
one step further by making the relationship between an element and its containing class an explicit part
of every triplet. If this relationship is specified in a controlled terminology, then assertions can be tested
for validity. For example, if an RDF Schema Specification (RDFS) asserts that the finding site of a lesion
must be an anatomical feature, then assertions about actual lesions can be tested for valid finding sites.
Furthermore, this logic specifies a “range” in the same syntactic structure as the instance assertion: changes
to the knowledge base do not affect the syntactical representation of the knowledge. Systems that adopt
this approach will require effort to take advantage of new features of terminologies, without having to
rebuild their infrastructure when changes are made.

Having change data in discrete tagged change sets will allow the software to hide most of the complexity
of version management from the human managers, allowing them to focus on significant decisions.

2.3. Configuration Requirements
A granular self-describing model will support any statement that can be made using concepts in a sub-
ject-predicate-object structure, and its compositional aspect permits compound predicates. It is difficult
to imagine a proposition that cannot be supported, however, this means that there are multiple ways to
support any specific kind of statement that a terminology knowledge base must support. This section ad-
dresses best practices for these cases.

2.3.1. Operations
Import: A user may identify content from another system and write it into the Terminology Repository.
When this happens, the new content will be recorded in the common, self-describing format. When a set of
content is imported, rules asserted by the source steward or the Terminology Repository steward may be
used to assert structural equivalence in the repository (i.e., different source concepts may be represented as
alternate representations of the same root concept). During importation of subsequent versions of a system,
changes to assets on which other enterprise assets depend must be identified and managed as directed
by documented policies. The import operation will usually identify sets of such changes which require
prioritization to prevent redundant processing.

Search (Requirement 24): A user may use lexical or concept-based parameters to search for a set of match-
ing assets.

View (Requirement 25): A user may view an asset, the view consisting of related information associated
in visually appropriate ways. This view may omit information not appropriate to the user’s context.

Compare (Requirement 12): A user may view related assets, including versions of component, in a form
designed to support analytical comparison (e.g., side-by-side display).

Authoring/Maintenance: A user may modify existing content or add new content. To preserve prior states,
all modifications are recorded as new versions of content: prior versions will remain unchanged. Any time
a change is made, the system will identify dependent assets and rules for handling these changes.

Business Requirements

17

• An addition (Requirement 26) is a new version with a new asset UUID (universally unique identifier).
Patterns may assert constraints for additions, which may be specific to context (Modules, Paths, Lan-
guages, etc.).

• An inactivation (Requirement 27) is a new version of an existing asset with status set to “inactive.”
Patterns may assert rules for deletions, which may be specific to context.

• A change (Requirement 28) is a new version of an existing asset with the new value(s), distinguishable
by STAMP value. A change may involve only a STAMP value. For example, deactivation, or import
of a concept to a new module or path.

Classify (Requirement 29): A user may select a logical profile and classifier and use classification logic
to test equivalence and subsumption of identified assets, or to generate a set of inferred relationships from
a set of stated relationships. An inferred set may be persisted.

Publish (Requirement 30): A user may promote content into a “publication” path and produce a transmis-
sible payload of content that can be consumed by other repositories. This promotion is a change and may
require resolution of constraints on membership in that path.

2.3.2. Patterns for Representing Various Assets
The data architecture must support patterns for the representation of many kinds of assets. A minimal list
includes the following:

1. A term must have:

a. A string representation

b. A language, possibly including refinements

c. An indicator of case sensitivity

d. A type used to represent whether a term is a synonym, fully qualified name (for example: SNOMED
CT® Fully Specified Name or LOINC® Long Common Name), definition, etc.

2. A concept must have:

a. At least one term

b. At least one parent, except for root concepts or terminologies that are not hierarchical

3. A logical definition must have:

a. A definitional status

4. STAMP values must include:

a. “Active” and “inactive” status concepts

b. At least one “default” author

c. At least one “root” module

d. Paths supporting “development” and “publication”

5. An inferred classification must indicate:

Business Requirements

18

a. The classifier used for its generation

b. The logic profile used for its generation

c. The stated asset(s)

6. The module dependency graph:

a. Identifies the root module

b. Lists all other modules, indicating dependency

c. Must be acyclical

Many other patterns may be present. Implementations are expected to support:

7. Any assembly of relationships associating one concept with another which must have:

a. At least one default rule (constraint) for handling changes (e.g., whether assets dependent on changed
assets can be automatically handled or require intervention)

8. Any assembly of relationships may include components that are themselves semantics

9. Value sets may include:

a. Rule-based member inclusions

b. Enumerated members

10.System-specific import rules:

a. System equivalences for Tinkar attribute and other infrastructure concepts

b. Specified exclusions of logical assertions to support equivalence-on-import inferences irrespective
of administrative metadata

11.Maps:

a. Relationships for equivalence assertions

b. Relationships for subsumption assertions

c. Relationships for other functions (e.g., U.S. Center for Disease Control and Prevention (CDC) Re-
portable Condition Mapping Table)

12.Constraints on asset patterns, including:

a. Logical composition constraints on concepts (e.g., the SNOMED CT® concept model)

b. Syntactic compositional constraints on strings (e.g., Multipurpose Internet Mail Extension [MIME]
types, International Organization for Standardization [ISO] languages, or UCUM units)

c. Pattern constraints, e.g., presence of exactly one name classified as “fully specified,” or names in
specified languages

d. Rules that may govern modifications to other assets (e.g., incremental addition of effort estimates
based on known problematic terms).

Business Requirements

19

One other feature is the set of concepts that the application will use to determine how to present the data to
the user. A key dimension is the STAMP information defined above. In addition, three other “coordinates”
are required for managing the presentation:

13.Language: A user may assert a required or preferred language, or a set of ranked language priorities.

14.Logic: A user may select the parameters for logical classification.

15.Navigation: A user may select the parameters for presentation of the logical classification

Like other concepts, these can be represented by the core data architecture. The application implementing
the Tinkar specification must be able to identify those concepts appropriate for these uses.

2.3.3. Constraints
Constraints are required to:

1. Ensure that the appropriate level of detail for standard terminologies are represented within Tinkar

2. Create terminology extensions that conform to the requirements of the standard(s) the extension is
based on

3. Perform general quality assurance

For example, constraints would be used to represent standard terminology artifacts, like the SNOMED
CT® Machine Readable Concept Model. Additionally, constraints could be used to ensure that the ter-
minologies represented within a Tinkar implementation are completely and consistently queried and dis-
played.

These same constraints can be used to create new content within a Tinkar implementation to specify the
minimally viable data that would be required. For example:

4. All concepts must have at least one Fully Qualified Name within at least one Language or Dialect

5. All concepts must have at least one Name specified as Preferred within at least one Language or Dialect

6. All concepts must have at least one parent, unless it is a root concept

Constraints can be applied (or not applied) based on various criteria to perform Quality Assurance on
content that is represented within a Tinkar implementation. For example:

7. SNOMED CT® Fully Specified Name hierarchy tags are applied based on where a concept exists in
a hierarchy

8. Relationships between concepts have domain (based on hierarchy) and range (the hierarchy(s) of values
that a relationship takes)

9. Modeling templates can be specified to ensure that new content that is created under a certain node in
a hierarchy uses similar wording and relationships

Since some Quality Assurance Constraints do not always indicate an error, an Allow List could also be
represented as a Semantic to record concepts that are allowed to not conform to a constraint. Constraints
would be represented using semantics as they are self describing and can support multiple different repre-
sentations for constraints (SNOMED CT® Expression Constraint Language, Drools, etc.). Representing
Constraints as a Semantic also ensures STAMP. STAMP is versioned over time, capturing author infor-
mation and allowing for tests and progress over different modules and paths.

Business Requirements

20

Implementing Constraints would depend upon how the Constraints are written and formatted. For example,
implementers could utilize a Rete algorithm through something like Drools to implement Constraints.

2.3.4. Minimally Required Content
A Tinkar implementation must be furnished with the following content:

1. One root concept

2. One module dependency graph

3. Infrastructure concepts a.k.a Tinkar Model Concepts to support the core patterns listed above

4. Import rules to support import of standard terminologies, including:

a. Equivalences to support semantic integration of terminologies (e.g., that a LOINC® “system” in-
stantiates the same relationship concept as the SNOMED CT® “inheres in” attribute)

b. Exclusions to support removal of non-semantic properties from classification (e.g., RxNorm Trans-
lated CDs)

2.4. List of Requirements
ID Requirement Level Clinical

System
Terminology
Management

Information
Design

1 Support the practice and coordination of
safe, effective medicine

Need x

2 Provide quality information in the
patient record

Need x

3 Represent information in commonly
understood data standards

Feature x x x

4 Provide terms appropriate to the context Feature x x x

5 Capture terminology suggestions from
point of care

Function x

6 Indicate data for which changes to
the terminology could affect record
interpretation

Function x x x

7 View available terms and decision
support recommendations for specified
dates and contexts

Function x x x

8 Support rapid and accurate recording
and review of record data

Need x

9 Manage change systematically Feature x x

10 Identify assets uniquely Function x x

11 Retain all prior versions Function x x

12 Support comparison of versions Function x x

13 Support branching of sets of assets for
independent development

Function x x

Business Requirements

21

14 Support controlled merging of branches
by identifying and addressing conflicts
with defined rules

Function x x

15 Modify enterprise terminology by
creating, modifying, or deactivating
assets and relationships

Function x x

16 Import standard terminologies,
including merging capability for
assets referring to prior versions of the
standard

Function x x

17 Publish enterprise terminologies,
including application and resolution of
constraints specific to the publication
path

Function x x

18 A self-describing method for
representing terminology assets from
diverse and mutable models

Feature x

19 Represent the status of the asset in a
context

Function x x

20 Represent the time at which a change is
recorded

Function x x

ID Requirement Level Clinical
System

Terminology
Management

Information
Design

21 Represent the author of a change Function x x

22 Represent the system or sub-system of
an asset

Function x x

23 Represent the path or branch of an asset
version

Function x x

24 Support search using lexical or logical
criteria

Function x

25 Support detailed view of assets and
diverse properties, filtering content not
relevant to the chosen context

Function x

26 Add terminology assets, including
concepts, terms, relationships,
definitions, value sets, maps, and others

Function x x

27 Deactivate assets, preserving their
original form

Function x x

28 Modify assets, preserving their original
form

Function x x

29 Classify assets using identified tools and
logical profiles in chosen contexts, with
the option to persist the inferred assets

Function x

30 Process a set of content for publication,
including identification and resolution
of unresolved constraints

Function x

Tinkar Reference Model

22

3. Tinkar Reference Model
The Tinkar Reference Model is a logical model described herein using the Object Management Group
(OMG) UML 2.0 notation to describe the structure of integrated data representation and change manage-
ment for biomedical terminologies. Tinkar provides an architecture that delivers integrated terminology
to the enterprise and its information systems. In doing so, it addresses the differences in management and
structure across reference terminology, local concepts, and code lists/value sets. This section describes
classes of objects that support a common foundational framework for terminology and knowledge base
systems (e.g., SNOMED CT®, LOINC®, RxNorm, HL7). An implementation of Tinkar can provide a
single representation for all terminologies required in the U.S. and other countries, while also providing a
better foundation for managing change. Tinkar could support the operation of a variety of systems intend-
ed to deliver knowledge management for terminology to vendors providers, and standards-development
organizations like HL7.

3.1. Standard Class Model
Figure 3.1. Versioned Component

Versioned Component

The Tinkar Reference Model fulfills the requirement of capturing a complete record of all changes, in-
cluding relevant context information. This is captured via the STAMP class using the following fields:

1. Status: A status is identified by a concept, which may be annotated with other identifying information.
For example: active or inactive (???Requirement_19)

2. Time: Timestamps must employ a common standard, which must support precision and time zone.
(???Requirement_20)

3. Author: An author is identified by a concept, which may be annotated with other identifying informa-
tion as required. (???Requirement_21)

4. Module: Assignment to the appropriate terminology (e.g., LOINC®) or terminology component (e.g.,
SNOMED CT®, US Extension). A module is identified by a concept, which may be annotated with
other identifying information. (???Requirement_22)

../../../business-requirements/src/docbkx/business-requirements.xml#requirement_19
../../../business-requirements/src/docbkx/business-requirements.xml#requirement_20
../../../business-requirements/src/docbkx/business-requirements.xml#requirement_21
../../../business-requirements/src/docbkx/business-requirements.xml#requirement_22

Tinkar Reference Model

23

5. Path: Specification of an object under version control within a terminology development lifecycle, e.g.,
for distributed development, testing, staging, or production. A path is a common synomyn for “branch”
as used in current software version control best practices/literature. A path is identified by a concept,
which may be annotated with other identifying information. A core set of paths is necessary to support
publication to external organizations. (???Requirement_23)

These elements together are referred to by the acronym “STAMP,” as described previously. Every new
assertion, whether a new component or a change to an existing component, must have a STAMP to deter-
mine when it is to be used. The STAMP properties support the ability to apply terminology components
for specific purposes. For example,

• “Path” can be used to test provisional content without physically swapping out systems.

• “Module” can be used to filter out work that has not been authorized by the enterprise.

• “Time” supports the ability to apply CDS rules as they would have looked in the past.

The Tinkar Reference Model does not merely support the ability to “STAMP” components; it asserts a
requirement that all changes have a STAMP. STAMP assertions are unversioned IdentifiedComponents
that are referenced by the components they scope. Since STAMP uses versioned concepts (that have a
STAMP), having the STAMP as a versioned component would lead to an infinite regress.

Not all terminology systems contain all the information recorded in STAMP, but defaults can be used in
cases where it is missing. For example, SNOMED CT® contains the Status, Time, and Module but do not
distribute the Path or Author. Since most terminologies only release a Production path, the Path could be
defaulted to Production Path and the Author could be defaulted to SNOMED CT® Author.

All IdentifedComponents in the knowledge base will consist of a series of change records, called Compo-
nentVersions, (beginning with the “Create” version), all associated to an underlying ComponentChronol-
ogy.

A Components Chronology only has properties attributed to it by its versions. Looking at the Identified-
Component through different sets of changes (published version, geographically defined set of modules,
historical timestamp) may reveal substantially different IdentifedComponents.

../../../business-requirements/src/docbkx/business-requirements.xml#requirement_23

Tinkar Reference Model

24

3.2. Component Types

Figure 3.2. Component Types

Component Types

All Components in Tinkar are uniquely identified using UUID. A Component will be represented by an
array of UUIDs with at least one UUID, but can be represented by more than one UUID in the case of a
concept being derived from multiple sources. For example, the concept Acetaminophen (which exists in
SNOMED CT®, LOINC®, and RxNorm) could have a UUID from each terminology and be represented
as an array of UUIDs for this single concept within a Tinkar implementation.

A Concept is identified using UUIDs and contains no information. To assemble groups of assertions and
to provide information about Concepts, Tinkar uses a construct called a Semantic. A Semantic is a class
containing a set of predicates and objects about a subject. A semantic adds meaning to the components
it references, through the fields it contains. A Semantic supports the specification of value sets, compo-
sitional definitions, and other components requiring internal structure, and it specifies the nature of the
compositional relationship explicitly.

The Semantic class uses a Concept to define the relationship between the value(s) and the Concept; the
value itself may be either a concept or some other kind of data type, such as a string. This creates the ability
to assemble assertions into more complex structures.

Tinkar Reference Model

25

Figure 3.3. Compositional Semantics

Compositional Semantics

As discussed earlier, if an author makes a change to an IdentifiedComponent, the prior Version is un-
changed, but a new version – with the appropriate STAMP information – is recorded. Users viewing the
Concept and associated Semantics in the prior context (i.e., as of the prior time, if no other STAMP ele-
ment has changed) will see the old values; users viewing the Concept and associated Semantics in the new
context will see the new values.

Since it is versioned, a Semantic is manifested as a SemanticChronology, containing a set of Seman-
ticVersions. SemanticVersion is a single instance of a Semantic with a STAMP, and a SemanticChronol-
ogy is the set of versions having a STAMP for a Semantic. Concepts, too, are manifest as collections: a
ConceptChronology consisting of a set of ConceptVersions. ConceptVersion is a single instance of an
identifier for a concept with a STAMP and the ConceptChronology is the set of versions having a STAMP
for a concept. A concept identifier specifies a ConceptChronology; specifying a ConceptVersion requires
a rule or parameter for selecting among STAMP values.

If other IdentifiedComponents depend on the changed concept, these IdentifiedComponents can be identi-
fied by relationships in the Semantics. The Semantics can assert rules for how to manage these changes. A
Semantic defining a value set for data entry might automatically accept any deactivations from the source
system authority, while a Semantic defining a value set for research might automatically decline to adopt
deactivations, or do so based on whether there are extant operational values. Escalating such decisions
for human adjudication or review at multiple levels is also always an option. Systems might adopt any
number of methods for dealing with identified changes: the important thing is to ensure the changes can
be identified consistently.

3.3. Field Data Types
Tinkar supports the following field data types for use with Semantics.

Tinkar Reference Model

26

1. String - a sequence of characters, either as a literal constant or as a variable. Strings could be used to
represent terms from code systems or URLs, textual definitions, etc

2. Integer - data type that represents some range of mathematical integers

3. Float - represents values as high-precision fractional values

4. Boolean - represents the values true and false

5. Byte Array - an array of 8-bit signed two’s complement integers

6. Directed Graph or Digraph - a graph whose edges are ordered pairs of vertices. Each edge can be
followed from one vertex to another vertex

7. Instant - models a single instantaneous point on a timeline

8. Planar Point - position in a two-dimensional space (a plane)

9. Spatial Point - position in a three-dimensional space

10.Component ID List - an ordered list of Component IDs

11.Component ID Set - an unordered list of Component IDs

12.UUID - A 128-bit number used to identify information in computer systems

13.Directed Tree or Ditree - a graph obtained from an undirected tree by replacing each undirected edge
by two directed edges with opposite directions

14.DiGraph - A graph in which a set of objects are connected where all the edges are directed from one
vertex to another

15.Vertex - The fundamental unit of data that makes up a graph or tree

a. In Tinkar, property graphs are used as a general-purpose data pattern to represent an abstract syntax
tree (AST), such as Web Ontology Language (OWL) EL++. This allows for data types without
requiring custom nodes.

i. An AST may be used “during semantic analysis, where the compiler checks for correct usage
of the elements of the program and the language. The compiler also generates symbol tables
based on the AST during semantic analysis. A complete traversal of the tree allows verification
of the correctness of the program. After verifying correctness, the AST serves as the base for code
generation. The AST is often used to generate an intermediate representation, sometimes called
an intermediate language, for the code generation.” [15]

ii. An AST is made up of nodes and branches. In Tinkar, every tree will always have roots, but they
are specific: “An OWL EL root” vs. a “BPMN root”, etc. Each node must have 0 or more children.

b. Here is an example of Tinkar output of semantics that reference multiple concepts.

Tinkar Reference Model

27

Figure 3.4. Multi-Concept Tinkar Output

In this output, one can see a sufficient set and necessary set. Bulleted items are properties in the node.
The output is printed as a “depth first search.” Each depth adds 3 characters of padding and shows
how OWL EL++ definitions, using only terminology and a standard property graph data structure,
are represented. The 1st one is node index 0 which has a child of node index 8. Node index 0 is
the OWL EL++ definition root. Node 8 points to Node 7, and the meaning of Node 8 is that it is a
necessary set. Node 7 is ‘And’ and points to Node 5,1,6. Node 5’s meaning is ‘Role Type’, Value is
‘Role group’, and its other property is ‘Role Operator.’ Node 5 points to Node 4. Node 4 is ‘And.’
Node 3 is ‘Role Type.’ Node 2 is Concept Reference. 7 also points to 1 and 6 (Concept References).

c. The property graph model demonstrates that each vertex has a meaning. Tinkar can use concepts to
represent anything end users might need at nodes. This allows for data types without requiring cus-
tom nodes. With no changes to the underlying data structures, Tinkar can represent more than OWL
EL++. With updates to terminology, Tinkar can represent any parsable standard, such as Business
Process Model and Notation (BPMN) and Decision Model and Notation (DMN), using this property
graph model and a proper set of terminology concepts and semantics represented using Tinkar.

3.4. Pattern (For Semantics)
The Tinkar Reference Model defines a first-class feature of the model, the Pattern (PatternVersion and
PatternChronology). A Pattern is a class defining a set of predicates and object types that can be asserted
about a class of subjects. All Semantics follow Patterns. A PatternVersion is a single instance of a pattern
with a STAMP and a PatternChronology is the set of versions having a STAMP for a pattern. This feature
asserts patterns that Semantic components can follow, like an XML or RDF Schema.

Tinkar Reference Model

28

Figure 3.5. Pattern

Pattern

Using the Pattern, Semantics with varying fields and data types can be specified to represent any structure
needed to provide meaning to a concept. For example, if a field within a semantic is used to describe an
SDO’s website, the Meaning would be “URL,” DataType of “String,” and Purpose of “Website.” The
Pattern would then contain an array of these FieldDefinitions.

Tinkar Reference Model

29

3.5. Overall Tinkar Architecture
Figure 3.6. Overall Tinkar Architecture

Overall Tinkar Architecture

Class Definitions

Concept - An identifier for a concept or instance. The identifier contains no information; all information
specifying or describing the concept is asserted with Semantics.

ConceptVersion - A single instance of an identifier for a concept with a STAMP.

ConceptChronology - The set of versions having a STAMP for a concept. A concept identifier specifies
a ConceptChronology; specifying a ConceptVersion requires a rule or parameter for selecting among
STAMP values.

Semantic - A class containing a set of predicates and objects about a subject. Semantics perform the
descriptive work in Tinkar.

SemanticVersion - A single instance of a Semantic with a STAMP.

SemanticChronology - The set of versions having a STAMP for a Semantic.

Pattern - A class defining a set of predicates and object types that can be asserted about a class of subjects.
All Semantics follow Patterns.

PatternVersion - A single instance of a pattern with a STAMP.

PatternChronology - The set of versions having a STAMP for a pattern.

3.6. Coordinate
The Tinkar Reference Model supports and encourages the storage of time series data that utilizes multiple
coordinates, for example, STAMP, Language, Dialect, clinical domains, etc. The ability to efficiently

Tinkar Reference Model

30

search, display, and navigate concepts and semantics requires the ability to calculate combinations of
content based on one or more of these different coordinates.

In order to facilitate the computability of various, complex coordinates, including time series data, a graph
structure is commonly used in software versioned control systems. A particular type of graph structure that
is commonly used is a “version graph,” such as a directed acyclic graph. A version graph would enable a
Tinkar implementation to recover the state of the graph at a particular point in time. Most graph databases
do not support versioning as a first-class concept. It is possible, however, to create a versioning scheme
inside the graph model whereby nodes and relationships are timestamped and archived whenever they are
modified. The downside of such versioning schemes is that they leak into any queries written against the
graph, adding a layer of complexity to even the simplest query.

Types of Coordinates:

1. STAMP coordinates are the most basic type of coordinate on which all content should be filtered.
Examples of STAMP coordinates are:

a. Most recent version

b. Set of data from several versions

c. All active components only

2. Language coordinates are used to control the terms that should be displayed. Examples of Language
coordinates are:

a. Displaying terms based on a language and/or dialect

b. Prioritized list of synonyms based on a particular clinical domain

3. Logic coordinates are used to identify the various results from Description Logic Classifiers as well as
the different versions of the output over time:

a. Result from various Description Logic Classifiers

4. Navigation coordinates are used to assist in viewing and searching for a particular concept. Examples
of these would be:

a. Stated vs. inferred relationships from SNOMED CT®

b. Concepts inclusion/exclusion for a particular domain

As the Tinkar specification evolves towards a Draft Standard for Trial Use (DSTU) and Connectathons,
more coordinates and detailing will be provided.

3.6.1. Calculating Coordinates
The ComponentChronology contains all the versions of a component from the date it was instantiated until
the most recent version. Components only get a new version whenever something about the component
changes. To calculate the latest version requires the ability to find the most recent version of each compo-
nent. Utilizing the STAMP Coordinates supports calculating all other coordinates:

1. Identify the Module(s) the user would like to view/search/modify.

2. Identify the Path the user would like to view/search/modify.

3. Identify the Status or Statuses the user would like to view/search/modify.

Tinkar Reference Model

31

4. If relevant, identify the Author(s) the user would like to view/search/modify.

5. The last piece of the STAMP coordinate (time) is the most difficult to calculate. In most cases the user
will need to find the most recent version of the component as of the current time to calculate this point
of the coordinate. However, since Tinkar supports and encourages the representation of historical, the
user may need to calculate the most recent version as of a different point in time.

After the STAMP Coordinates have been calculated, additional coordinates can then be applied as well. For
example, applying a language and dialect coordinate will be important not only for viewing and searching,
but also to determine the appropriate preferred name for displaying a hierarchy.

3.6.2. Next Steps Around Coordinates
As the Tinkar specification evolves towards a DSTU and Connectathons, more coordinates and detailing
will be provided.

3.7. Future Iterations
The current Tinkar Reference Model is expressive enough to be able to represent any terminology. Future
iterations of the Tinkar specification will require harmonized implementation guides to be created for
each terminology. Doing so will ensure that implementers will be able manage terminology produced
by a variety of organizations across a healthcare enterprise. Harmonized implementation guides will also
support healthcare organizations’ standard terminology modules, value sets, and coding systems as well
as local terms and equivalence mappings.

Additional metadata from standards like Dublin Core or FHIR that may not currently be supported with
the current Tinkar Reference Model could be supported using Concepts and Semantics. However, further
changes to the Tinkar Reference Model may be needed if they cannot be supported using the current model.

Next Steps

32

4. Next Steps
Tinkar is a logical model and therefore may be implemented using relevant implementable models and
technology. This section will focus on the use of Tinkar alongside preexisting HL7 exchange standards.
In practice, the Tinkar logical model can be used to create practical implementation guidance in the fu-
ture (e.g., implementation guides, profiles, value sets), and can be applied to design change management
solutions.

4.1. Tinkar Serialization Data
Tinkar will include a serialization format that will serialize any or all the information stored in a Tinkar
implementation. This serialization format will allow third parties to read data created by a Tinkar compliant
implementation. A serialized Tinkar file can also be used to transfer information between different Tinkar
implementations. This will ensure that no Tinkar data is lost.

C# and Java code implementations of the Tinkar Data Model will be made available to integrators, allowing
third parties to more easily use Tinkar.

Specifically, third party implementers can use Java or C# to:

1. Read Tinkar data into memory.

2. Manipulate and modify Tinkar data using Tinkar data structures.

3. Write Tinkar data out to a serialized file.

4.2. Tinkar interfacing with Fast Healthcare In-
teroperability Resource (FHIR)

Tinkar data can be used to create FHIR compliant data. Tinkar data can be used to generate FHIR data.
Only a subset of the Tinkar data model would be converted to FHIR. Roundtripping of data between Tinkar
and FHIR back and forth is likely to result in Tinkar data loss.

Tinkar data items lost in FHIR conversion:

1. STAMP data: Loss of the STAMP data means that the ability to look at terminology at a specific point
in time is lost. The FHIR data is a snapshot at a fixed point in time.

2. Semantic data: FHIR data does not contain a concept similar to Tinkar’s semantic relationships.

There are two main areas in which Tinkar and FHIR are expected to interface, as described in the sub-
sequent sections: “Dynamic FHIR Terminology Servers” and “Static FHIR CodeSystem and ValueSet
Resources.”

4.2.1. Dynamic FHIR Terminology Servers
FHIR terminology servers are designed to provide knowledge artifacts in real time to support clinical
system operations. A system may request $expand on a ValueSet, for instance, to populate a drop-down list
in a user interface, or $validate-code to confirm content in an interface conforming to a profile; a request
for $subsumes on a CodeSystem or on a ConceptMap can be used to translate codes when transforming
native records to a standard format, and so forth.

Next Steps

33

FHIR queries against the FHIR terminology server could use Tinkar originated terminology data as well
as other non-Tinkar generated terminology to fulfill the requests.

The serialization file described above would be one way to import data from a Tinkar system to a FHIR
terminology server. Implementers for each FHIR Terminology Server would have to write code specific
to their implementation to import Tinkar data into their own implementation dependent data storage.

The Tinkar C# and Java libraries could be used by the FHIR Server Implementors to help support that
import process.

4.2.2. Static FHIR CodeSystem and ValueSet Resources
FHIR CodeSystem and ValueSet records are designed to provide knowledge artifacts to support clinical
system operations. Terminology data contained in FHIR CodeSystem and ValueSet resources are fixed at
the time that the resource instances are generated.

It is expected that some automated means of creating FHIR ValueSet and CodeSystem records from Tinkar
will be developed. The automated system could import data from a Tinkar system using the serialization
format described above, and output desired CodeSystem and ValueSet instances. Modifications to the
Tinkar data would require regeneration of the FHIR artifacts and subsequent transmission to interested
users of those resource instances.

4.3. Tinkar interfacing with HL7 Unified Termi-
nology Governance (UTG), HL7 Terminological
Content (THO), and HL7 Terminology Authority
(HTA)

The three HL7 processes for maintaining and distributing HL7 terminology content are Unified Terminol-
ogy Governance (UTG), HL7 Terminological Content (THO), and HL7 Terminology Authority (HTA).
Our understanding of these HL7 Areas:

• UTG: A process with associated tooling to support the process strictly for governance of HL7 termino-
logical content. UTG is the maintenance process to keep it up to date and manage change.

• THO: HL7 Terminological Content refers to terminology.HL7.org (THO) which is the domain address
of the entry point for the published content. HL7 terminology or THO refers to an enormous corpus of
coded content that varies in quality and that has been developed in HL7 for about 30 years.

• HTA: The HTA’s primary purpose is to deal memorandum of understanding and publication interfaces
with non-HL7 publishers and maintainers of terminological content.

The aim of these HL7 groups, to provide standardized HL7 terminology in a consistent format, is consistent
with the goal of Tinkar.

If HL7 so desired, Tinkar could be used as the format by which all HL7 terminology is exported. It is
believed that current HL7 content can be converted to Tinkar with no loss. Further work would need to
be done to verify that if HL7 was interested in that path.

Conversion of HL7 common terminology data to Tinkar would allow:

1. Use of tools like KOMET to import, export, maintain and validate HL7 terminology data

Next Steps

34

2. Use of Tinkar serialization format for serialization and distribution format

3. Use of Tinkar and third-party tooling to convert Tinkar serialized data to FHIR records and import to
FHIR terminology servers

Key Takeaways

35

5. Key Takeaways
1. Terminology Knowledge Architecture (Tinkar) intends to integrate clinical terminology and local con-

cepts to support increased data quality for interoperable clinical information. Quality clinical data en-
ables healthcare systems across the enterprise to conduct robust and meaningful data analysis and in-
crease overall interoperability, which ultimately enhances quality of care across all medical facilities.

2. A Tinkar specification provides a standardized model for terminology and change management.

3. The Tinkar Reference Model could provide a single representation for all terminologies required in the
U.S. (e.g., SNOMED CT®, LOINC® , RxNorm).

4. Tinkar provides the foundation of a knowledge architecture that delivers integrated terminology to the
enterprise and its information systems. In doing so, it addresses the differences in management and
structure across reference terminology, local concepts, and code lists/value sets.

5. Tinkar aims to be both self-describing and completely machine processed:

a. Self-describing machine-readable representation of terminology, such that if an application can pro-
cess the metadata, it should be able to import the content/concepts and make it available to enterprise
applications.

b. The machine-readable terminology could generate human-readable documentation so that business
analysts and developers can understand and apply it correctly.

6. If HL7 so desired, Tinkar could be used as the format by which all HL7 terminology is exported. It is
believed that current HL7 content can be converted to Tinkar with no loss; further work would need to
be done to verify that if HL7 was interested in that path.

7. In practice, the Tinkar logical model can be used to create practical implementation guidance in the
future (e.g., implementation guides, profiles, value sets), and can be applied to design change manage-
ment solutions.

Foundational Architecture

36

6. Foundational Architecture

6.1. Foundational Architecture Challenges
Integrated Knowledge Management (IKM) will be composed of an integrated clinical transformation pro-
cess to represent and bring together disparate terminology standards by using a single model that can en-
compass any customized content. We understand that health IT systems must address the following an-
tipatterns:

6.1.1. Accidental Complexity
Accidental (or incidental) complexity is complexity that arises in computer programs or their development
process that is non-essential to the problem to be solved. While essential complexity is inherent and un-
avoidable, accidental complexity is caused by the approach chosen to solve the problem. Some examples
of accidental complexity as they relate to informatics are described in the following sections.

6.1.1.1. Semantic-laden Identifiers

Solving a distributed identifier allocation problem by using namespaces that are assigned to organizations
(or committees in the case of HL7), semantics are often introduced into the identifier, which some devel-
opers use to identify what organization created the components that were associated with those identifiers.
Exposing derivable semantics in the identifier can lead to complexity when users/developers demand that
the semantics be maintained, which may result in unnecessary retirement as described in the next section.
Reliance on UUIDs rather than on identifiers with derivable semantics would eliminate this complexity.

6.1.1.2. Unnecessary Retirement

An unintended side effect of using identified namespaces as part of distributed identifier assignment is
an increase in the complexity of transferring responsibility for a component from one organization to
another. This complexity includes an elaborate sequence of marking a component for retirement in one
release, actually retiring it in a subsequent release, and creating an essentially identical component with an
identifier derived from the new organization’s namespace. Furthermore, there is the need for the creation
of mapping solutions to keep historical relationships between components retired for these reasons to the
current concepts that replace them. Again, reliance on UUIDs rather than on identifiers with derivable
semantics would eliminate this complexity.

6.1.1.3. Post-coordination

Terminology models sometimes make it necessary to require post-coordination to provide domain cov-
erage at the point of care. However, the information models we use in healthcare typically can’t handle
post-coordination well. Reliance on the information model to represent post-coordination has introduced
complexity that might be avoided if we used a dynamic means to assign unique identifiers to post-coor-
dinated expressions.

6.1.1.4. Accidental Complexity Solutions

Accidental complexity must be minimized in any good architecture, design, and implementation. Working
in short iterations with ongoing design reviews may help reduce accidental complexity. We must also
develop an example implementation in parallel with the architecture, so that complexity can be identified
early, and evaluated critically with respect to the essential or accidental nature of that complexity.

Foundational Architecture

37

6.1.2. Design by Committee
A project that has many designers involved but no unifying plan or vision.

6.1.2.1. No Unifying Vision

Design by committee is the result of having many contributors to a project, but no unifying vision. A
complex software design is the product of a committee process. The design has so many features and
variations that it is infeasible for any group of developers to realize the specifications in a reasonable time
frame.

6.1.2.2. Interoperability at the Expense of Operability

Interoperability provides an illusion of operability between disparate systems. Therefore, there is no need
to standardize.

6.1.2.3. Design by Committee Solutions

A solution to design by committee is to articulate a set of architectural principles to which architectural
components will be evaluated against, and to have the committee be advisory to an architect that provides
the unifying vision.

6.1.3. Stovepipe
The Stovepipe Enterprise antipattern is characterized by a lack of coordination and planning across a set
of systems. If every subsystem has a unique interface, the system is overly complex. Absence of common
multisystem conventions is a key problem for systems. For example, currently, essentially no terminology
systems are the same with regard to their representation and semantics, despite the requirement that they
must work together.

6.1.3.1. Overlapping and unreconciled models

SNOMED CT® and LOINC® are classic examples of two terminologies that are proposed for common
use in health IT, but that are not well coordinated, and have unreconciled content (content that is not made
consistent or compatible). As an example of unreconciled content, SNOMED CT® and LOINC® both
have representations for Amoxicillin. In LOINC®, Amoxicillin is a textual value in the has-component
field of the concept:

AMOXICILLIN [MASS/VOLUME] IN SERUM OR PLASMA

HAS-COMPONENT: AMOXICILLIN

While SNOMED CT® has the concept:

AMOXICILLIN MEASUREMENT (PROCEDURE)

COMPONENT: AMOXICILLIN (SUBSTANCE)

In SNOMED CT®, Amoxicillin is also a concept, rather than just a text value.

Foundational Architecture

38

From an end-user’s perspective, the artificial separation and uncoordinated development of these important
systems has been a burden. RxNorm may help bridge the medication components of the overlap, but
there are other overlapping domains (method, type of scale, system, time aspect, and non-pharmaceutical
components) that RxNorm does not cover. The UMLS may help us formally reconcile some of these other
domains, but if coordination and reconciliation can be part of the development processes for these sources,
rather than a cleanup exercise for implementers, we can allocate resources to solving more compelling
problems.

We hope that the newly announced cooperative agreement between IHTSDO (owners of SNOMED CT®)
and the Regenstrief Institute (owners of LOINC®), and the NLM (owners of RxNorm) will change the
coordination of these systems in a significantly helpful way. Although SNOMED CT® and LOINC® are
classic examples of overlapping and unreconciled models, there are many other examples. The UMLS
identifies over 150 sources, most of which are uncoordinated, and have independent models. These over-
lapping and unreconciled models create an unnecessary burden for the implementer.

6.1.3.2. Uncoordinated development

Today, related components from different organizations do not share their work prior to a release. The
result of this lack of sharing is that dependent components are always out of date with the latest release of
the underlying standard. For example, how can you keep a mapping of SNOMED CT® to International
Classification of Diseases Tenth Revision Clinical Modification (ICD-10-CM) components up to date,
when it takes 6 months after the release of SNOMED CT® to update and quality assure the map? As an
implementer, does that mean you should wait 6 months for the map to be updated before deploying the
latest SNOMED CT® release? What if the new SNOMED CT® release contains new content that may
improve the diagnosis, treatment, or prevention of disease? Is it really acceptable to delay implementation
of the latest SNOMED CT® release by 6 months while waiting for dependent system components to be
updated after the fact?

6.1.3.3. Stovepipe solutions

The primary solution for the stovepipe systems we are working with is to break down the barriers that pre-
vent collaborative development of content, tools, processes, and ultimately architecture. Today, deploy-
ment delay is not a significant issue because clinical decision support is relatively nascent, and pharmacy,
laboratory, and clinical systems are poorly integrated. However, if we successfully create compelling de-
cision support on an integrated and shareable platform, coordination of development and release cycles
among clinical terminologies, logical representation, clinical facts, and clinical knowledge bases will be-
come increasingly important. We must prepare for success and work to better coordinate development
among dependent components.

Here we propose leveraging opportunities that are helping to break down these barriers. Those opportu-
nities include acquisition and development of open-source tooling. Improvements in open-source tooling
will help break down collaborative barriers significantly. Such improvement is a fundamental focus of our
architecture effort. The solution to the stovepipe antipattern is effective collaboration without barriers of
proprietary concern.

References

39

7. References
1. Bodenreider O, Cornet R, Vreeman DJ. Recent Developments in Clinical Terminologies -
SNOMED CT, LOINC, and RxNorm. Yearbook Med Inform. 2018 Aug;27(1):129-139. doi: 10.1055/
s-0038-1667077. Epub 2018 Aug 29. PMID: 30157516; PMCID: PMC6115234.Available from: https://
www.ncbi.nlm.nih.gov/pmc/articles/ PMC6115234/.

2. Capability Maturity Model Integration (CMMI) for Development, Version 1.3. Software Engineering
Institute; 2010. Available from: https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9661.

3. Institute of Medicine (2012). Health IT and Patient Safety. Building Safer Systems for Better Care.
Washington, DC: National Academies Press.

4. Cimino JJ. Desiderata for controlled medical vocabularies in the twenty-first century. Methods of in-
formation in medicine. 1998;37(4-5):394-403.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415631/.

5. NHS England. QRISK2 update (identified code mapping errors). SystmOne National User Group; 2016.
Available from: https://www.systmoneusergroup.co.uk/qrisk2-update/.

6. Iacobucci G. Computer error may have led to incorrect prescribing of statins to thousands of patients.
BMJ. 2016 May 13;353:i2742. doi: 10.1136/bmj.i2742. PMID: 27178396.

7. MHRA information on TPP and QRISK®2. GOV.UK. Medicines and Healthcare products Regulato-
ry Agency; 2016. Available from: https://www.gov.uk/government/news/mhra-information-on-tpp-and-
qrisk2.

8. Clinical decision support malfunctions are widespread and persistent, AMIA says. Healthcare IT
News. 2016. Available from: https://www.healthcareitnews.com/news/clinical-decision-support-malfunc-
tions-arewidespread- and-persistent-amia-says.

9. Oaks, P. Towards Self Describing Web Services. Lecture Notes in Computer Sci-
ence. 2003. 2722. 10.1007/3-540-45068-8_90. Available from: https://www.researchgate.net/
publication/27482447_Towards_Self_Describing_Web_Services.

10. Tharakan V. Metadata Driven Architecture For Application Development. ClaySys Technologies;
2019. Available from: https://www.claysys.com/blog/metadata-driven-application-development/.

11. Analysis Normal Form Informative Ballot. HL7 CIMI Work Group. Sept 2019. http://www.hl7.org/
documentcenter/public/ballots/2019SEP/downloads/HL7_CIMI_LM_ANF_R1_I1_2019SEP.pdf. mirror
link: http:// solor.io/wp-content/uploads/2020/01/ANF-Ballot-Jan-2020.pdf.

12. Parnas, D. On the Criteria To Be Used in Decomposing Systems into Modules.
Programming Techniques. 1972. Available from: https://www.win.tue.nl/~wstomv/edu/2ip30/refer-
ences/criteria_for_modularization.pdf.

13.Kaszubowski, M. Modular software design - 10 common mistakes. AppUnite Blog. 2020, Sep. Avail-
able from: https://appunite.com/blog/modular-software-design-mistakes.

14. Delamore, S. The 5 Essential Elements of Modular Software Design. 2020, Jan.
Medium. Available from: https:// shanebdavis.medium.com/the-5-essential-elements-of-modular-soft-
ware-design-6b333918e543.

15. Abstract syntax tree. Wikipedia; 2020. Available from: https://en.wikipedia.org/wi-
ki/Abstract_syntax_tree.

	Integrated Knowledge Management (IKM) Volume 4
	Table of Contents
	Part I. Foundational Architecture
	1. Terminology Knowledge Architecture (Tinkar) Overview
	1.1. Motivation: Why Tinkar?
	1.2. The Problem Tinkar Addresses
	1.3. About Tinkar
	1.4. Tinkar Objectives and Purpose – Manage Terminology and Change
	1.5. Related Efforts
	1.6. Benefits of Self-Describing Architecture
	1.7. Approach - Architectural Separation of Concerns
	1.8. About this Document

	2. Business Requirements
	2.1. Clinical Requirements
	2.2. Asset Curation Requirements
	2.3. Configuration Requirements
	2.3.1. Operations
	2.3.2. Patterns for Representing Various Assets
	2.3.3. Constraints
	2.3.4. Minimally Required Content

	2.4. List of Requirements

	3. Tinkar Reference Model
	3.1. Standard Class Model
	3.2. Component Types
	3.3. Field Data Types
	3.4. Pattern (For Semantics)
	3.5. Overall Tinkar Architecture
	3.6. Coordinate
	3.6.1. Calculating Coordinates
	3.6.2. Next Steps Around Coordinates

	3.7. Future Iterations

	4. Next Steps
	4.1. Tinkar Serialization Data
	4.2. Tinkar interfacing with Fast Healthcare Interoperability Resource (FHIR)
	4.2.1. Dynamic FHIR Terminology Servers
	4.2.2. Static FHIR CodeSystem and ValueSet Resources

	4.3. Tinkar interfacing with HL7 Unified Terminology Governance (UTG), HL7 Terminological Content (THO), and HL7 Terminology Authority (HTA)

	5. Key Takeaways
	6. Foundational Architecture
	6.1. Foundational Architecture Challenges
	6.1.1. Accidental Complexity
	6.1.1.1. Semantic-laden Identifiers
	6.1.1.2. Unnecessary Retirement
	6.1.1.3. Post-coordination
	6.1.1.4. Accidental Complexity Solutions

	6.1.2. Design by Committee
	6.1.2.1. No Unifying Vision
	6.1.2.2. Interoperability at the Expense of Operability
	6.1.2.3. Design by Committee Solutions

	6.1.3. Stovepipe
	6.1.3.1. Overlapping and unreconciled models
	6.1.3.2. Uncoordinated development
	6.1.3.3. Stovepipe solutions

	7. References

